首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Tracking UNC-45 chaperone-myosin interaction with a titin mechanical reporter
Authors:Christian M Kaiser  Paul J Bujalowski  Liang Ma  John Anderson  Henry F Epstein  Andres F Oberhauser
Institution:Department of Neuroscience and Cell Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
Abstract:Myosins are molecular motors that convert chemical energy into mechanical work. Allosterically coupling ATP-binding, hydrolysis, and binding/dissociation to actin filaments requires precise and coordinated structural changes that are achieved by the structurally complex myosin motor domain. UNC-45, a member of the UNC-45/Cro1/She4p family of proteins, acts as a chaperone for myosin and is essential for proper folding and assembly of myosin into muscle thick filaments in vivo. The molecular mechanisms by which UNC-45 interacts with myosin to promote proper folding of the myosin head domain are not known. We have devised a novel approach, to our knowledge, to analyze the interaction of UNC-45 with the myosin motor domain at the single molecule level using atomic force microscopy. By chemically coupling a titin I27 polyprotein to the motor domain of myosin, we introduced a mechanical reporter. In addition, the polyprotein provided a specific attachment point and an unambiguous mechanical fingerprint, facilitating our atomic force microscopy measurements. This approach enabled us to study UNC-45-motor domain interactions. After mechanical unfolding, the motor domain interfered with refolding of the otherwise robust I27 modules, presumably by recruiting them into a misfolded state. In the presence of UNC-45, I27 folding was restored. Our single molecule approach enables the study of UNC-45 chaperone interactions with myosin and their consequences for motor domain folding and misfolding in mechanistic detail.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号