首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolutionary origin, diversification and specialization of eukaryotic MutS homolog mismatch repair proteins
Authors:Culligan K M  Meyer-Gauen G  Lyons-Weiler J  Hays J B
Institution:Program in Molecular Biology, Oregan State University, Corvallis, OR 97331, USA.
Abstract:Most eubacteria, and all eukaryotes examined thus far, encode homologs of the DNA mismatch repair protein MutS. Although eubacteria encode only one or two MutS-like proteins, eukaryotes encode at least six distinct MutS homolog (MSH) proteins, corresponding to conserved (orthologous) gene families. This suggests evolution of individual gene family lines of descent by several duplication/specialization events. Using quantitative phylogenetic analyses (RASA, or relative apparent synapomorphy analysis), we demonstrate that comparison of complete MutS protein sequences, rather than highly conserved C-terminal domains only, maximizes information about evolutionary relationships. We identify a novel, highly conserved middle domain, as well as clearly delineate an N-terminal domain, previously implicated in mismatch recognition, that shows family-specific patterns of aromatic and charged amino acids. Our final analysis, in contrast to previous analyses of MutS-like sequences, yields a stable phylogenetic tree consistent with the known biochemical functions of MutS/MSH proteins, that now assigns all known eukaryotic MSH proteins to a monophyletic group, whose branches correspond to the respective specialized gene families. The rooted phylogenetic tree suggests their derivation from a mitochondrial MSH1-like protein, itself the descendent of the MutS of a symbiont in a primitive eukaryotic precursor.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号