首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of bivalent cations on post-rest adaptation in guinea-pig heart muscle
Authors:T Beyer  W Herger?der  U Ravens
Institution:Institut für Pharmakologie der Universit?t Kiel, FRG.
Abstract:In isolated papillary muscles of guinea-pig hearts, the inotropic effects of bivalent cations, Ca2+, Ba2+, Sr2+, and Ni2+, were investigated during post-rest adaptation in order to study their individual action on excitation-contraction coupling. Upon exposure to each cation studied, the force of contraction was transiently enhanced, whereas the steady state force was influenced differently: it increased with Ca2+, Ba2+ and Sr2+ and was depressed by Ni2+. The transmembrane action potentials (measured at 90% repolarization) were slightly prolonged by Sr2+ and even more by Ba2+, and were shortened by Ca2+ and Ni2+. After 10 min rest, the post-rest contractions consisted of a late peak (PII) that was enhanced in high Ca2+-solution an by Sr2+. Ni2+ and Ba2+ depressed PII and during adaptation to pre-rest controls an early peak of contraction (PI) prevailed. There was no simple relation between post-rest adaptation of force and the duration of action potential in the presence of the bivalent cations tested. During post-rest adaptation the two components of contraction can be separated. The results are interpreted in terms of a model of excitation-contraction coupling which derives Ca ions for contractile activation from two sources: transmembrane calcium influx and calcium release from cellular stores. From the different effects on post-rest adaptation it is concluded that the individual cations influence excitation-contraction coupling more specifically and not merely by "screening-off" the negative surface charges.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号