首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis of glycosaminoglycans by human skin fibroblasts cultured on collagen gels.
Authors:J T Gallagher  N Gasiunas  and S L Schor
Abstract:A comparison has been made of the synthesis of glycosaminoglycans by human skin fibroblasts cultured on plastic or collagen gel substrata. Confluent cultures were incubated with 3H]glucosamine and Na235SO4 for 48h. Radiolabelled glycosaminoglycans were then analysed in the spent media and trypsin extracts from cells on plastic and in the medium, trypsin and collagenase extracts from cells on collagen gels. All enzyme extracts and spent media contained hyaluronic acid, heparan sulphate and dermatan sulphate. Hyaluronic acid was the main 3H-labelled component in media and enzyme extracts from cells on both substrata, although it was distributed mainly to the media fractions. Heparan sulphate was the major 35S]sulphated glycosaminoglycan in trypsin extracts of cells on plastic, and dermatan sulphate was the minor component. In contrast, dermatan sulphate was the principal 35S]sulphated glycosaminoglycan in trypsin and collagenase extracts of cells on collagen gels. The culture substratum also influenced the amounts of 35S]sulphated glycosaminoglycans in media and enzyme extracts. With cells on plastic, the medium contained most of the heparan sulphate (75%) and dermatan sulphate (> 90%), whereas the collagenase extract was the main source of heparan sulphate (60%) and dermatan sulphate (80%) from cells on collagen gels; when cells were grown on collagen, the medium contained only 5-20% of the total 35S]sulphated glycosaminoglycans. Depletion of the medium pool was probably caused by binding of 35S]sulphated glycosaminoglycans to the network of native collagen fibres that formed the insoluble fraction of the collagen gel. Furthermore, cells on collagen showed a 3-fold increase in dermatan sulphate synthesis, which could be due to a positive-feedback mechanism activated by the accumulation of dermatan sulphate in the microenvironment of the cultured cells. For comparative structural analyses of glycosaminoglycans synthesized on different substrata labelling experiments were carried out by incubating cells on plastic with 3H]glucosamine, and cells on collagen gels with 14C]glucosamine. Co-chromatography on DEAE-cellulose of mixed media and enzyme extracts showed that heparan sulphate from cells on collagen gels eluted at a lower salt concentration than did heparan sulphate from cells on plastic, whereas with dermatan sulphate the opposite result was obtained, with dermatan sulphate from cells on collagen eluting at a higher salt concentration than dermatan sulphate from cells on plastic. These differences did not correspond to changes in the molecular size of the glycosaminoglycan chains, but they may be caused by alterations in polymer sulphation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号