首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Induced fit and the entropy of structural adaptation in the complexation of CAP and lambda-repressor with cognate DNA sequences
Authors:Dixit Surjit B  Andrews David Q  Beveridge D L
Institution:Chemistry Department and Molecular Biophysics Program, Hall-Atwater Laboratories, Wesleyan University, Middletown, Connecticut 06457-0280, USA.
Abstract:Molecular dynamics (MD) simulations of 5 ns on protein-DNA complexes of catabolite-activator protein (CAP), lambda-repressor, and their corresponding uncomplexed protein and DNA, are reported. These cases represent two extremes of DNA bending, with CAP DNA bent severely and the lambda-operator nearly straight when complexed with protein. The calculations were performed using the AMBER suite of programs and the parm94 force field, validated for these studies by good agreement with experimental nuclear magnetic resonance data on DNA. An explicit computational model of structural adaptation and computation of the quasiharmonic entropy of association were obtained from the MD. The results indicate that, with respect to canonical B-form DNA, the extreme bending of the DNA in the complex with CAP is approximately 60% protein-induced and 40% intrinsic to the sequence-dependent structure of the free oligomer. The DNA in the complex is an energetically strained form, and the MD results are consistent with a conformational-capture mechanism. The calculated quasiharmonic entropy change accounts for the entropy difference between the two cases. The calculated entropy was decomposed into contributions from protein adaptation, DNA adaptation, and protein-DNA structural correlations. The origin of the entropy difference between CAP and lambda-repressor complexation arises more from the additional protein adaptation in the case of lambda, than to DNA bending and entropy contribution from DNA bending. The entropy arising from protein DNA cross-correlations, a contribution not previously discussed, is surprisingly large.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号