首页 | 本学科首页   官方微博 | 高级检索  
     


Computer simulation of emerging asymmetry in the mouse blastocyst
Authors:Honda Hisao  Motosugi Nami  Nagai Tatsuzo  Tanemura Masaharu  Hiiragi Takashi
Affiliation:Hyogo University, Kakogawa, Hyogo 675-0195, Japan. hihonda@hyogo-dai.ac.jp
Abstract:The mechanism of embryonic polarity establishment in mammals has long been controversial. Whereas some claim prepatterning in the egg, we recently presented evidence that mouse embryonic polarity is not established until blastocyst and proposed the mechanical constraint model. Here we apply computer simulation to clarify the minimal cellular properties required for this morphology. The simulation is based on three assumptions: (1) behavior of cell aggregates is simulated by a 3D vertex dynamics model; (2) all cells have equivalent mechanical properties; (3) an inner cavity with equivalent surface properties is gradually enlarged. However, an initial attempt reveals a requirement for an additional assumption: (4) the surface of the cavity is firmer than intercellular surfaces, suggesting the presence of a basement membrane lining the blastocyst cavity, which is indeed confirmed by published data. The simulation thus successfully produces a structure recapitulating the mouse blastocyst. The axis of the blastocyst, however, remains variable, leading us to an additional assumption: (5) the aggregate is enclosed by a capsule, equivalent to the zona pellucida in vivo. Whereas a spherical capsule does not stabilize the blastocyst axis, an ellipsoidal capsule eventually orients the axis in accordance with its longest diameter. These predictions are experimentally verified by time-lapse recordings of mouse embryos. During simulation, equivalent cells form two distinct populations composed of smaller inner cells and larger outer cells. These results reveal a unique feature of early mammalian development: an asymmetry may emerge autonomously in an equivalent population with no need for a priori intrinsic differences.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号