首页 | 本学科首页   官方微博 | 高级检索  
     


Overexpression of the transcription factor MdbHLH33 increases cold tolerance of transgenic apple callus
Authors:Haifeng Xu  Nan Wang  Yicheng Wang  Shenghui Jiang  Hongcheng Fang  Jing Zhang  Mengyu Su  Weifang Zuo  Lin Xu  Zongying Zhang  Xuesen Chen
Affiliation:1.National Key Laboratory of Crop Biology, College of Horticulture Science,Shandong Agricultural University,Tai’an,China
Abstract:As cold stress greatly affects plant growth and development, understanding the mechanisms underlying cold tolerance in plants is important. In this study, we analyzed the expression levels of apple (Malus domestica) MdbHLH33 and MdCBF1–5 by semi-quantitative PCR after exposure to 4 °C for different amounts of time and generated evolutionary trees for MdbHLH33 and the MdCBFs. Overexpressing MdbHLH33 pro-GUS in ‘Orin’ callus, indicated that transgenic callus had higher GUS activity and was more deeply stained at 4 °C than at 25 °C. Subcellular localization showed that MdbHLH33 was located in the nucleus. Overexpressing MdbHLH33 in ‘Orin’ callus increased the expression level of MdCBF2, MdCOR15A-1, and MdCOR15A-2, and resulted in increased cold tolerance. EMSA and Chip-PCR analysis showed that MdbHLH33 could bind the LTR cis-acting element found in the MdCBF2 promoter. Overexpressing MdCBF2 in ‘Orin’ callus indicated that MdCBF2 could also increase the expression level of MdCOR15A-1 and MdCOR15A-2 and improve cold tolerance; we also found that transgenic callus overexpressing MdCBF2 had reduced MdCBF1 and MdCBF5 expression and increased MdCBF3 and MdCBF4 expression. Overall, these results show that MdbHLH33 can regulate the expression of MdCBF2 and improve the cold tolerance of transgenic callus.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号