首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Activation of chloride currents in murine portal vein smooth muscle cells by membrane depolarization involves intracellular calcium release
Authors:Saleh Sohag N  Greenwood Iain A
Institution:Department of Basic Medical Sciences, Pharmacology and Clinical Pharmacology, St. George's Hospital Medical School, London, United Kingdom.
Abstract:The present study describes the first characterization of Ca2+-activated Cl currents (IClCa) in single smooth muscle cells from a murine vascular preparation (portal veins). IClCa was recorded using the perforated patch version of the whole cell voltage-clamp technique and was evoked using membrane depolarization. Generation of IClCa relied on Ca2+ entry through dihydropyridine-sensitive Ca2+ channels because IClCa was abolished by 1 µM nicardipine and enhanced by raising external Ca2+ concentration or by application of BAY K 8644. IClCa was characterized by the sensitivity to Cl channel blockers and the effect of altering the external anion on reversal potential. Activation of IClCa after membrane depolarization was dependent on Ca2+ release from intracellular stores. Thus the amplitude of IClCa was diminished by the SR-ATPase inhibitor cyclopiazonic acid, the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the ryanodine receptor blocker tetracaine. The degree of inhibition produced by the application of 2-APB and tetracaine together was significantly greater than the effect of each agent applied alone. In current-clamp mode, injection of depolarizing current elicited a biphasic action potential, with the later depolarization being sensitive to niflumic acid (NFA; 10 µM). In isometric tension recordings, NFA inhibited spontaneous contractions. These data support a role for this conductance in portal vein excitability.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号