首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of peroxynitrite in secondary oxidative damage after spinal cord injury
Authors:Xiong Yiqin  Rabchevsky Alexander G  Hall Edward D
Institution:Spinal Cord and Brain Injury Research Center, University of Kentucky Chandler Medical Center, Lexington, KY 40536, USA.
Abstract:Peroxynitrite (PON, ONOO(-)), formed by nitric oxide synthase-generated nitric oxide radical ( NO) and superoxide radical (O(2) (-)), is a crucial player in post-traumatic oxidative damage. In the present study, we determined the spatial and temporal characteristics of PON-derived oxidative damage after a moderate contusion injury in rats. Our results showed that 3-nitrotyrosine (3-NT), a specific marker for PON, rapidly accumulated at early time points (1 and 3 h) and a significant increase compared with sham rats was sustained to 1 week after injury. Additionally, there was a coincident and maintained increase in the levels of protein oxidation-related protein carbonyl and lipid peroxidation-derived 4-hydroxynonenal (4-HNE). The peak increases of 3-NT and 4-HNE were observed at 24 h post-injury. In our immunohistochemical results, the co-localization of 3-NT and 4-HNE results indicates that PON is involved in lipid peroxidative as well as protein nitrative damage. One of the consequences of oxidative damage is an exacerbation of intracellular calcium overload, which activates the cysteine protease calpain leading to the degradation of several cellular targets including cytoskeletal protein (alpha-spectrin). Western blot analysis of alpha-spectrin breakdown products showed that the 145-kDa fragments of alpha-spectrin, which are specifically generated by calpain, were significantly increased as soon as 1 h following injury although the peak increase did not occur until 72 h post-injury. The later activation of calpain is most likely linked to PON-mediated secondary oxidative impairment of calcium homeostasis. Scavengers of PON, or its derived free radical species, may provide an improved antioxidant neuroprotective approach for the treatment of post-traumatic oxidative damage in the injured spinal cord.
Keywords:α-spectrin  calpain  oxidative damage  peroxynitrite  reactive oxygen species  spinal cord injury
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号