首页 | 本学科首页   官方微博 | 高级检索  
     


Glassy State and Cryopreservation of Mint Shoot Tips
Authors:Aline S. Teixeira  M. Elena González‐Benito  Antonio D. Molina‐García
Affiliation:1. ICTAN, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, CSIC, , Madrid, 28040 Spain;2. Dpto. de Biología Vegetal, E.U.I.T. Agrícola, Universidad Politécnica de Madrid, Ciudad Universitaria, , Madrid, 28040 Spain
Abstract:Vitrification refers to the physical process by which a liquid supercools to very low temperatures and finally solidifies into a metastable glass, without undergoing crystallization at a practical cooling rate. Thus, vitrification is an effective freeze‐avoidance mechanism and living tissue cryopreservation is, in most cases, relying on it. As a glass is exceedingly viscous and stops all chemical reactions that require molecular diffusion, its formation leads to metabolic inactivity and stability over time. To investigate glassy state in cryopreserved plant material, mint shoot tips were submitted to the different stages of a frequently used cryopreservation protocol (droplet‐vitrification) and evaluated for water content reduction and sucrose content, as determined by ion chromatography, frozen water fraction and glass transitions occurrence by differential scanning calorimetry, and investigated by low‐temperature scanning electron microscopy, as a way to ascertain if their cellular content was vitrified. Results show how tissues at intermediate treatment steps develop ice crystals during liquid nitrogen cooling, while specimens whose treatment was completed become vitrified, with no evidence of ice formation. The agreement between calorimetric and microscopic observations was perfect. Besides finding a higher sucrose concentration in tissues at the more advanced protocol steps, this level was also higher in plants precultured at 25/?1°C than in plants cultivated at 25°C. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:707–717, 2013
Keywords:ice crystal  dehydration  droplet‐vitrification  DSC  cryo‐SEM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号