首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effect of enzyme dehydration on alcalase‐catalyzed dipeptide synthesis in near‐anhydrous organic media
Authors:Petra Vossenberg  Rik Beeftink  Martien Cohen Stuart  Hans Tramper
Institution:1. Bioprocess Engineering, Wageningen University, , Wageningen, The Netherlands;2. Laboratory of Physical Chemistry and Colloid Science, Wageningen University, , Wageningen, The Netherlands
Abstract:The effect of enzyme dehydration by molecular sieves on the coupling of phenylalanine amide and the carbamoylmethyl ester of N‐protected phenylalanine in near‐anhydrous tetrahydrofuran was investigated. This coupling was catalyzed by Alcalase covalently immobilized onto macroporous acrylic beads (Cov); these immobilized enzymes were hydrated prior to use. The dehydration kinetics of Cov by molecular sieve powder were determined by incubating Cov with different amounts of molecular sieve powder for different periods of time (0–80 h). Subsequently, the remaining coupling activity of Cov was measured. Dehydration‐induced inactivation of Cov by molecular sieve powder was found to occur in three phases: (1) an initial, rapid, major dehydration‐induced inactivation that takes place during the first activity measurement, (2) a phase of first‐order inactivation, and (3) a plateau phase in activity. These dehydration kinetics were incorporated into a previously found reaction kinetics model. The resulting model was then used to fit progress curve data of the coupling in the presence of different amounts of molecular sieve powder. Upon establishment of parameter values, the model was used to predict independent data sets and found to work well. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:870–875, 2013
Keywords:enzyme dehydration  enzyme kinetics  progress curve analysis  parameter estimation  dipeptide synthesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号