首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of DNA synthesis facilitates expansion of low‐complexity repeats
Authors:Andrei Kuzminov
Institution:Department of Microbiology, University of Illinois at Urbana‐Champaign, Urbana, IL, USA
Abstract:Simple DNA repeats (trinucleotide repeats, micro‐ and minisatellites) are prone to expansion/contraction via formation of secondary structures during DNA synthesis. Such structures both inhibit replication forks and create opportunities for template‐primer slippage, making these repeats unstable. Certain aspects of simple repeat instability, however, suggest additional mechanisms of replication inhibition dependent on the primary DNA sequence, rather than on secondary structure formation. I argue that expanded simple repeats, due to their lower DNA complexity, should transiently inhibit DNA synthesis by locally depleting specific DNA precursors. Such transient inhibition would promote formation of secondary structures and would stabilize these structures, facilitating strand slippage. Thus, replication problems at simple repeats could be explained by potentiated toxicity, where the secondary structure‐driven repeat instability is enhanced by DNA polymerase stalling at the low complexity template DNA. This minireview is dedicated to the FASEB‐2012 meeting “Dynamic DNA Structures in Biology”, organized by Nancy Maizels and Sergei Mirkin.
Keywords:DNA synthesis inhibition  dNTP pools  repeat instability  strand slippage  trinucleotide repeats
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号