首页 | 本学科首页   官方微博 | 高级检索  
     


A mathematical basis for plant patterning derived from physico‐chemical phenomena
Authors:Thejasvi Beleyur  Valiya Kadavu Abdul Kareem  Anil Shaji  Kalika Prasad
Affiliation:1. School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India;2. School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
Abstract:The position of leaves and flowers along the stem axis generates a specific pattern, known as phyllotaxis. A growing body of evidence emerging from recent computational modeling and experimental studies suggests that regulators controlling phyllotaxis are chemical, e.g. the plant growth hormone auxin and its dynamic accumulation pattern by polar auxin transport, and physical, e.g. mechanical properties of the cell. Here we present comprehensive views on how chemical and physical properties of cells regulate the pattern of leaf initiation. We further compare different computational modeling studies to understand their scope in reproducing the observed patterns. Despite a plethora of experimental studies on phyllotaxis, understanding of molecular mechanisms of pattern initiation in plants remains fragmentary. Live imaging of growth dynamics and physicochemical properties at the shoot apex of mutants displaying stable changes from one pattern to another should provide mechanistic insights into organ initiation patterns. Editor's suggested further reading in BioEssays Computer simulation: The imaginary friend of auxin transport biology Abstract
Keywords:auxin  computational modeling  mechanical properties  pattern  phyllotaxis  plant  shoot meristem
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号