首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of <Emphasis Type="Italic">Sorghum</Emphasis><Emphasis Type="Italic">vulgare</Emphasis>: independence from osmotic stress,involvement of ion toxicity and significance of dark phosphorylation
Authors:Sofía García-Mauriño  José Monreal  Rosario Alvarez  Jean Vidal  Cristina Echevarría
Institution:Departamento de Biología Vegetal, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes no. 6, 41012 Seville, Spain. sgarma@us.es
Abstract:C(4) phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) is subjected to in vivo regulatory phosphorylation by a light up-regulated, calcium-independent protein kinase. Salt stress greatly enhanced phosphoenolpyruvate carboxylase-kinase (PEPCase-k) activity in leaves of Sorghum. The increase in PEPCase-k anticipated the time course of proline accumulation thereby suggesting that water stress was not involved in the kinase response to salt. Moreover, osmotic stress seemed not to be the main factor implicated, as demonstrated by the lack of effect when water availability was restricted by mannitol. In contrast, LiCl (at a concentration of 10 mM in short-term treatment of both excised leaves and whole plants) mimicked the effects of 172 mM NaCl salt-acclimation, indicating that the rise in PEPCase-k activity resulted primarily from the ionic stress. Both NaCl and LiCl treatments increased the activity of a Ca(2+)-independent, 35 kDa kinase, as demonstrated by an in-gel phosphorylation experiment. Short-term treatment of excised leaves with NaCl or LiCl partially reproduces the effects of whole plant treatments. Finally, salinization also increased PEPCase-k activity and the phosphorylation state of PEPCase in darkened Sorghum leaves. This fact, together with increased malate production during the dark period, suggests a shift towards mixed C(4) and crassulacean acid metabolism types of photosynthesis in response to salt stress.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号