首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential dependence of stretch and shear stress signaling on caveolin-1 in the vascular wall
Authors:Albinsson Sebastian  Nordström Ina  Swärd Karl  Hellstrand Per
Institution:Vascular Physiology Group, Department of Experimental Medical Science, Lund University, BMC D12, Lund SE-221 84, Sweden. Sebastian.Albinsson@med.lu.se
Abstract:The role of caveolae in stretch- versus flow-induced vascular responses was investigated using caveolin 1-deficient knockout (KO)] mice. Portal veins were stretched longitudinally for 5 min (acute) or 72 h (organ culture). Basal ERK1/2 and Akt phosphorylation were increased in organ-cultured KO veins, as were protein synthesis and vessel wall cross sections. Stretch stimulated acute phosphorylation of ERK1/2 and long-term phosphorylation of focal adhesion kinase (FAK) and cofilin but did not affect Akt phosphorylation. Protein synthesis, and particularly synthesis of smooth muscle differentiation markers, was increased by stretch. These effects did not differ in portal veins from KO and control mice, which also showed the same contractile response to membrane depolarization and inhibition by the Rho kinase inhibitor Y-27632. KO carotid arteries had increased wall cross sections and responded to pressurization (120 mmHg) for 1 h with increased ERK1/2 but not Akt phosphorylation, similar to control arteries. Shear stress by flow for 15 min, on the other hand, increased phosphorylation of Akt in carotids from control but not KO mice. In conclusion, caveolin 1 contributes to low basal ERK1/2 and Akt activity and is required for Akt-dependent signals in response to shear stress (flow) but is not essential for trophic effects of stretch (pressure) in the vascular wall.
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号