首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Catalytic role of subunit A in ribulose-1,5-diphosphate carboxylase from Chromatium strain D
Authors:T Takabe  T Akazawa
Institution:Research Institute for Biochemical Regulation, School of Agriculture, Nagoya University, Chikusa, Nagoya, Japan
Abstract:The oligomeric form of the larger subunit designated as Am produced by alkali treatment of ribulose-1,5-diphosphate carboxylase from the purple sulfur bacterium, Chromatium strain D, retained partial enzymic activity in the absence of the small subunit (B). Supporting evidence was obtained by polyacrylamide gel electrophoresis at pH 8.9 and Sephadex G-200 gel filtration equilibrated with alkaline buffer at pH 9.2. The specific enzyme activity of Am (45 nmoles CO2 fixed/mg protein/min) was approximately 15% of the native intact enzyme molecule. By sodium dodecyl sulfatepolyacrylamide gel electrophoresis, the Am preparation was proved to be free from contamination of subunit B. With reservation of the sensitivity limit of this particular technique we concur that the larger subunit is the catalytic entity of the carboxylase reaction. The optimum pH of the ribulose-1,5-diphosphate carboxylase reaction catalyzed by isolated Am lies on the alkaline side at about pH 8.3 with or without Mg2+. The undissociated native enzyme possesses an optimum pH on the alkaline side in the absence of Mg2+, which shifts to the acidic side in the presence of Mg2+. From this behavior it is inferred that the association of the smaller subunit with the larger subunit causes conformational stabilization of the enzyme molecule with an accompanying change in the pH optimum due to Mg2+.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号