首页 | 本学科首页   官方微博 | 高级检索  
     


The effects of stem I and loop A on the processing of 5 S rRNA from Drosophila melanogaster.
Authors:L Levinger  V Vasisht  V Greene  I Arjun
Affiliation:Natural Sciences Department/Biology Discipline, York College, City University of New York, Jamaica 11451.
Abstract:The 135-nucleotide Drosophila melanogaster 5 S RNA precursor is processed by removal of 15 nucleotides from its 3' end before incorporation into the large ribosomal subunit. Mature 5 S RNA consists of five helical stem-loops; stem IV and part of V are dispensable, whereas stem III and the 1/118 G-C base pair closest to the processing site at nucleotide 120 are required for processing (Preiser, P., and Levinger, L. (1991) J. Biol. Chem. 266, 7509-7516; Preiser, P., and Levinger, L. (1991) J. Biol. Chem. 266, 23602-23605). We have investigated the effects of stem I and loop A transversions, transitions, selected additions and deletions on 5 S RNA processing. Stem I single substitutions generally prevent processing, whereas compensatory double substitutions restore a range of processing rates. Proximal to the processing site, stem I double substitutions inhibit processing. In the distal portion of stem I and loop A, the processing effect of paired sequence changes varies widely in an irregular pattern. The 7/112 GU pair and nucleotide 13A least tolerate sequence changes; several mutations clustered close to the stem I-loop A boundary stimulate processing. We interpret these results in terms of the RNA helix path and possible RNA-protein contacts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号