首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Myofilament response to Ca2+ and Na+/H+ exchanger activity in sex hormone-related protection of cardiac myocytes from deactivation in hypercapnic acidosis
Authors:Bupha-Intr Tepmanas  Wattanapermpool Jonggonnee  Peña James R  Wolska Beata M  Solaro R J
Institution:Turku PET Centre, University of Turku, Turku, Finland. marko.laaksonen@miun.se
Abstract:Because of technical challenges very little is known about absolute myocardial perfusion in humans in vivo during physical exercise. In the present study we applied positron emission tomography (PET) in order to 1) investigate the effects of dynamic bicycle exercise on myocardial perfusion and 2) clarify the possible effects of endurance training on myocardial perfusion during exercise. Myocardial perfusion was measured in endurance-trained and healthy untrained subjects at rest and during absolutely the same (150 W) and relatively similar 70% maximal power output (W(max))] bicycle exercise intensities. On average, the absolute myocardial perfusion was 3.4-fold higher during 150 W (P < 0.001) and 4.9-fold higher during 70% W(max) (P < 0.001) than at rest. At 150 W myocardial perfusion was 46% lower in endurance-trained than in untrained subjects (1.67 +/- 0.45 vs. 3.00 +/- 0.75 ml x g(-1) x min(-1); P < 0.05), whereas during 70% W(max) perfusion was not significantly different between groups (P = not significant). When myocardial perfusion was normalized with rate-pressure product, the results were similar. Thus, according to the present results, myocardial perfusion increases in parallel with the increase in working intensity and in myocardial work rate. Endurance training seems to affect myocardial blood flow pattern during submaximal exercise and leads to more efficient myocardial pump function.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号