首页 | 本学科首页   官方微博 | 高级检索  
     


Bacteriophage predation promotes serovar diversification in Listeria monocytogenes
Authors:Marcel R. Eugster  Laurent S. Morax  Vanessa J. Hüls  Simona G. Huwiler  Alexandre Leclercq  Marc Lecuit  Martin J. Loessner
Affiliation:1. Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland;2. Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, Paris, France
Abstract:Listeria monocytogenes is a bacterial pathogen classified into distinct serovars (SVs) based on somatic and flagellar antigens. To correlate phenotype with genetic variation, we analyzed the wall teichoic acid (WTA) glycosylation genes of SV 1/2, 3 and 7 strains, which differ in decoration of the ribitol‐phosphate backbone with N‐acetylglucosamine (GlcNAc) and/or rhamnose. Inactivation of lmo1080 or the dTDP‐l ‐rhamnose biosynthesis genes rmlACBD (lmo1081–1084) resulted in loss of rhamnose, whereas disruption of lmo1079 led to GlcNAc deficiency. We found that all SV 3 and 7 strains actually originate from a SV 1/2 background, as a result of small mutations in WTA rhamnosylation and/or GlcNAcylation genes. Genetic complementation of different SV 3 and 7 isolates using intact alleles fully restored a characteristic SV 1/2 WTA carbohydrate pattern, including antisera reactions and phage adsorption. Intriguingly, phage‐resistant L. monocytogenes EGDe (SV 1/2a) isolates featured the same glycosylation gene mutations and were serotyped as SV 3 or 7 respectively. Again, genetic complementation restored both carbohydrate antigens and phage susceptibility. Taken together, our data demonstrate that L. monocytogenes SV 3 and 7 originate from point mutations in glycosylation genes, and we show that phage predation represents a major driving force for serovar diversification and evolution of L. monocytogenes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号