首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A repeat sequence domain of the ring‐exported protein‐1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking
Authors:Emma McHugh  Steven Batinovic  Eric Hanssen  Paul J McMillan  Shannon Kenny  Michael D W Griffin  Simon Crawford  Katharine R Trenholme  Donald L Gardiner  Leann Tilley
Institution:1. Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia;2. Advanced Microscopy Facility, University of Melbourne, Parkville, VIC, Australia;3. Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia;4. School of BioSciences, University of Melbourne, Parkville, VIC, Australia;5. Infectious Diseases Division, Queensland Institute of Medical Research, Herston, QLD, Australia
Abstract:The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring‐EXported Protein‐1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob‐associated histidine‐rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether‐like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α‐helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号