首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The elastic behavior of the urinary bladder for large deformations
Authors:C H Regnier  H Kolsky  P D Richardson  G M Ghoniem  J G Susset
Abstract:The purpose of this paper is to investigate the theoretical basis for the pressure-distension behavior of the urinary bladder. A finite strain theory is developed for hollow spherical structures and it is shown that the Treloar model is a good prototype only for rubber balloons. The pressure-extension ratio relationship is inverted to lead a general form of strain energy function, and fitted by an empirical relation involving one exponential. The following form of strain energy function is derived: W(lambda, lambda, lambda -2) = C1 (P(1), a) + P(1)C2 (a, lambda)ea(lambda -1). Where C1(P(1), a) is a constant (N m-2), P(1) is the initial pressure, a is the rate of pressure increase and C2 (a, lambda) a third degree polynomial relation. P(1) and a are experimentally determined through volumetric pressure-distension data. It is verified that this type of energy function is also valid for uniaxial loading experiments by testing strips coming from the same bladder for which P(1) and a were computed. There is a good agreement between the experimental points and the theoretical stress-strain relation. Finally, the strain energy function is plotted as a function of the first strain invariant and appears to be of an exponential nature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号