Peptide inhibition of constitutively activated epithelial Na(+) channels expressed in Xenopus oocytes |
| |
Authors: | Ji H L Fuller C M Benos D J |
| |
Affiliation: | Department of Physiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0005, USA. |
| |
Abstract: | The hypothesis that 30-amino acid peptides corresponding to the C-terminal portion of the beta- and/or gamma-rat epithelial sodium channel (rENaC) subunits block constitutively activated ENaC was tested by examining the effects of these peptides on wild-type (wt) rENaC (alphabetagamma-rENaC), truncated Liddle's mutants (alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC), and point mutants (alphabeta(Y)gamma-, alphabetagamma(Y)-rENaC) expressed in Xenopus oocytes. The chord conductances of alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC were 2- or 3-fold greater than for wt alphabetagamma-rENaC. Introduction of peptides into oocytes expressing alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC produced a concentration-dependent inhibition of the amiloride-sensitive Na(+) conductances, with apparent dissociation constants (K(d)) ranging from 1700 to 160 microM, depending upon whether individual peptides or their combination was used. Injection of peptides alone or in combination into oocytes expressing wt alphabetagamma-rENaC or single-point mutants did not affect the amiloride-sensitive whole-cell currents. The single channel conductances of all the mutant ENaCs were the same as that of wild type (alphabetagamma-). The single channel activities (N.P(o)) of the mutants were approximately 2.2-2.6-fold greater than wt alphabetagamma-rENaC (1.08 +/- 0.24, n = 7) and were reduced to 1.09 +/- 0.17 by 100 microM peptide mixture (n = 9). The peptides were without effect on the single channel properties of either wt or single-point mutants of rENaC. Our data demonstrate that the C-terminal peptides blocked the Liddle's truncation mutant (alphabeta(T)gamma(T)) expressed in Xenopus oocytes but not the single-point mutants (alphabeta(Y)gamma or alphabetagamma(Y)). Moreover, the blocking effect of both peptides in combination on alphabeta(T)gamma(T)-rENaC was synergistic. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|