Department of Neuroscience, University of Pennsylvania-School of Medicine;Department of Physiology, University of Pennsylvania-School of Medicine
Abstract:
The enteric nervous system (ENS) is a self-contained network with identified functions, capable of performing complex behaviors in isolation. Its neurons (10 to 25 μm in diameter) are arranged in plexuses that are confined to distinct planes of the gut wall 1; the myenteric plexus can be found between the longitudinal and circular muscle layers, and the submucous plexus between the circular muscle layer and the mucosa. Since the effector systems for these plexuses (transporting epithelium, endocrine cells, immune elements, blood vessels and smooth muscle) are also contained within the gut wall, semi-intact preparations can be dissected that preserve individual components of different reflex pathways. The behavior of the effector systems is controlled by the submucous and myenteric plexuses acting in concert. Therefore, detailed knowledge of synaptic interactions within and between ganglia, and of communication between the plexuses, is essential for understanding normal gastrointestinal function. The ENS, as an intact nervous system, is a unique experimental model in which one can correlate molecular and cellular events with the electrical behavior of the neuronal network and its physiological outputs. Because of the quasi-two-dimensional organization of its plexuses, the ENS is particularly well suited for the study of neural networks using multiple site optical recording techniques that employ voltage-sensitive dyes 2,7,8,9. We will illustrate here the use of a relatively new naphthylstyryl-pyridinium dye (di-4-ANEPPDHQ) 3 that offers multiple advantages over its predecessors, including very low phototoxicity, slow rate of internalization, and remarkable chemical stability. When used in conjunction with a camera that permits sub-millisecond time resolution, this dye allows us to monitor the electrical activity of all the neurons in the field of view with a maximal spatial resolution of ~ 2.5 μm at 100X magnification. At lower magnification (10X or 20X), the sacrifice of single-cell resolution is compensated by a gain in perspective, revealing the intricacies of the inter-ganglionic circuitry.Download video file.(163M, mp4)