首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lamellar body formation precedes pulmonary surfactant apoprotein expression during embryonic mouse lung development in vivo and in vitro
Authors:Harold C Slavkin  Randall Johnson  Peter Oliver  Pablo Bringas  Jr    Grace Don-Wheeler  Mark Mayo  Jeffery A Whitsett
Institution:Laboratory For Developmental Biology, Department of Basic Sciences (Biochemistry/Genetics), School of Dentistry, University of Southern California, Los Angeles, California 90089-0191, USA;Department of Pediatrics, Children's Hospital, University of Cincinnati, Cincinnati, Ohio 45267-0541, USA
Abstract:Abstract. The purpose of this investigation was to determine whether lamellar inclusion body (LB) formation and surfactant apoprotein (SP-35) production are directly coordinated by temporal and positional information during development. In the present study we report a comparison between embryonic B10.A mouse lung morphogenesis and cytodifferentiation in vivo with that observed during organ culture in serumless medium. Precursor LB were first detected at embryonic day 12 (E12d), and progressively larger numbers and forms were produced during subsequent differentiation of respiratory alveolar duct epithelium. SP-35 was first detected during the canalicular period (E16.5d). Lung cultures (E12 d) showed pseudoglandular and canalicular periods of morphogenesis, and both ciliated epithelial and type II cell differentiation. Nonciliated cells produced increasing numbers of lamellar inclusion bodies throughout the culture period. SP-35 was detected at 9 days in vitro (d.i.v.). These observations indicate (i) precursor LB formation precedes SP-35 expression and is not dependent on apoprotein synthesis; (ii) E12d lung development in vitro using serumless medium proceeds at a rate equivalent to 0.5 days in vivo through 11 d.i.v.; and (iii) morphogenesis and differentiation occur in the absence of exogenous hormones and growth factors. The cell-cell interactions that play a role in morphogenesis and cell differentiation appear to be intrinsic to the developmental program for embryonic lung development and are likely to be mediated by autocrine and/or paracrine factors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号