Selective Inhibition of Enzyme Synthesis Under Conditions of Respiratory Inhibition |
| |
Authors: | Richard B. Flavell and Dow O. Woodward |
| |
Abstract: | When Neurospora mycelium is transferred from a medium containing sucrose to one containing acetate as sole source of carbon, a preferential synthesis of many Krebs cycle, glyoxylate cycle, and associated enzymes occurs. Respiration was inhibited during preferential enzyme synthesis in the following ways. (i) The amount of aeration (shaking) was reduced, (ii) cyanide was added to the culture, (iii) the carbon source, acetate, was removed, (iv) a mutant strain was starved of its Krebs cycle intermediates, and (v) respiration was inhibited by mutation. The effect of this respiratory inhibition on the synthesis of a number of enzymes was measured. It was found that the synthesis of nicotinamide adenine dinucleotide (NAD)-linked glutamate dehydrogenase and phosphoenolpyruvate carboxykinase was significantly less inhibited under conditions of respiratory inhibition than was the synthesis of Krebs cycle, glyoxylate cycle, and most other cell proteins synthesized during the adaptation period. This differential inhibition of enzyme synthesis was almost certainly not due to differential repression by regulatory metabolic end product effectors. Inhibition of mitochondrial respiration under these conditions most likely results in a limitation of the energy supply of the cell. Thus, it is suggested that the inhibition of synthesis of most proteins after inhibition of mitochondrial respiration results from a lack of energy in a utilizable form. Possible reasons to account for the relative insensitivity of NAD-linked glutamate dehydrogenase and phosphoenolpyruvate carboxykinase to inhibition under these conditions are discussed. |
| |
Keywords: | |
|
|