Affiliation: | 1.Department of Botany, Government College University, Faisalabad, Pakistan ;2.Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia ;3.Pakistan Academy of Sciences, Islamabad, Pakistan ; |
Abstract: | Trehalose is a natural non-reducing sugar that is found in the vast majority of organisms such as bacteria, yeasts, invertebrates and even in plants. Regarding its features, it is considered as a unique compound. It plays a key role as a carbon source in lower organisms and as an osmoprotectant or a stabilizing molecule in higher animals and plants. Although in plants it is present in a minor quantity, its levels rise upon exposure to abiotic stresses. Trehalose is believed to play a protective role against different abiotic stressful cues such as temperature extremes, salinity, desiccation. Moreover, it regulates water use efficiency and stomatal movement in most plants. Detectable endogenous trehalose levels are vital for sustaining growth under stressful cues. Exogenously applied trehalose in low amounts mitigates physiological and biochemical disorders induced by various abiotic stresses, delays leaf abscission and stimulates flowering in crops. External application of trehalose also up-regulates the stress responsive genes in plants exposed to environmental cues. The genetically modified plants with trehalose biosynthesis genes exhibit improved tolerance against stressful conditions. An increased level of trehalose has been observed in transgenic plants over-expressing genes of microbial trehalose biosynthesis. However, these transgenic plants display enhanced tolerance to heat, cold, salinity, and drought tolerance. Due to multiple bio-functions of this sugar, it has gained considerable ground in various fields. However, exogenous use of this bio-safe sugar would only be possible under field conditions upon adopting strategies of low-cost production of trehalose. In short, trehalose is a unique chemical that preserves vitality of plant life under harsh ecological conditions. Certainly, the new findings of this disaccharide will revolutionize a wide array of new avenues. |