首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Triacontanol Protects Mentha arvensis L. from Nickel-Instigated Repercussions by Escalating Antioxidant Machinery,Photosynthetic Efficiency and Maintaining Leaf Ultrastructure and Root Morphology
Authors:Nabi  Aarifa  Parwez  Rukhsar  Aftab  Tariq  Khan  M Masroor A  Naeem  M
Institution:1.Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
;
Abstract:

Nickel (Ni), an essential micronutrient and a prime component of the plant enzyme urease, has an indispensable role in plants. Triacontanol (TRIA) is a conspicuous plant growth regulator in agriculture, which proved advantageous in enhancing the overall production of plants. Therefore, an experiment was laid down to understand the effects of Ni toxicity on the menthol mint (Mentha arvensis L.) and its mitigation by exogenously applied TRIA. The different treatments applied to the plants were 0 (control), TRIA (10?6 M), Ni (60 mg kg?1), Ni (80 mg kg?1), TRIA (10?6 M)?+?Ni (60 mg kg?1), and TRIA (10?6 M)?+?Ni (80 mg kg?1). This work was evaluated on the basis of various growth, biochemical, physiological, yield and quality parameters. Nickel applied at 80 mg kg?1 of soil exhibited maximum inhibition in the parameters studied. Application of TRIA improved all the growth parameters such as plant height, fresh and dry weights as well as herbage yield under non stress and stressed conditions. The levels of carbonic anhydrase (CA) activity, photosynthetic parameters (chlorophyll and carotenoids), and chlorophyll fluorescence of the plants were also stimulated by TRIA under Ni stress. Exogenous TRIA also displayed positive effects on the cellular antioxidant defense mechanism of Ni-affected plants as it increased the levels of proline (PRO), electrolytic leakage (EL), and activities of antioxidant enzymes, viz. superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), therefore, restrained the triggering of the oxidative burst (reactive oxygen species) in the plant cells. Moreover, TRIA improved the overall production (in terms of yield and content) of EO in the plants and maintained the leaf ultrastructure and root morphology under Ni treatment. GC–MS analysis revealed that TRIA upregulated the level of menthone and menthyl acetate over their respective controls and under Ni-stressed condition.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号