首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genome-Wide Characterization,Evolution, and Expression Analysis of the Ascorbate Peroxidase and Glutathione Peroxidase Gene Families in Response to Cold and Osmotic Stress in Ammopiptanthus nanus
Authors:Wang  Ying  Cao  Shilin  Sui  Xiangyu  Wang  Jing  Geng  Yuke  Gao  Fei  Zhou  Yijun
Institution:1.Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, # 27 Zhongguancun South Avenue, Beijing, 100081, China
;
Abstract:

Ascorbate peroxidase (APX) and glutathione peroxidase (GPX) are two families of essential peroxidases that maintain redox balance in cells by catalyzing the reduction of hydrogen peroxide. Ammopiptanthus nanus is a rare broad-leaved evergreen shrub that lives in the temperate desert areas of Central Asia and exhibits strong resistance to low temperature and water stress. GPX and APX family members might contribute to the stress response of A. nanus by participating in reactive oxygen species scavenging. In the present study, APX and GPX family members in A. nanus were identified and their structure, evolution, and expression patterns under stress conditions were investigated. A total of 8 GPX genes, 6 APX genes, and 1 APX-like gene were identified in A. nanus, and these genes were unevenly distributed on 7 chromosomes. These APXs and GPXs showed conservation in amino acid sequence, three-dimensional structure, and intron–exon structure. The GPX gene family in A. nanus expanded in gene number, and the expansions were mainly driven by segmental duplication caused by large-scale duplication events in the evolution of Tribe Sophoreae and might play important roles in the freezing and drought tolerance in A. nanus. Expression profiling based on RNA-seq datasets and qRT-PCR analysis showed that most of the APX and GPX members were differentially expressed under osmotic and cold stress, which is in line with the high copies of stress and hormone response-related cis-acting elements predicted from the promoters of the APX and GPX family genes. The study provided new insight into the evolution of APX and GPX family and promoted the understanding of the molecular mechanism underlying the stress tolerance of A. nanus.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号