首页 | 本学科首页   官方微博 | 高级检索  
     


Thiols can either enhance or suppress DNA damage induction by catecholestrogens
Authors:Thibodeau P A  Kocsis-Bédard S  Courteau J  Niyonsenga T  Paquette B
Affiliation:Department of Radiobiology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada.
Abstract:The estrogen metabolites catecholestrogens (or hydroxyestrogens) are involved in carcinogenesis and the development of resistance to methotrexate. This induction of drug resistance correlates with the relative efficiency of catecholestrogens in the generation of reactive oxygen species (ROS) and the induction of DNA strand breaks. Although antioxidants can neutralize ROS, the generation of these reactive species by catecholestrogens can be enhanced by electron donors like NADH. Therefore, this study was undertaken to determine the ability of different thiol agents (GSH, NAC, DTT, DHLA) to either inhibit or enhance the level of DNA damage induced by the H(2)O(2) generating system 4-hydroxyestradiol/Cu(II). Our results show that GSH, DTT, and DHLA inhibited the induction of the 4-hydroxyestradiol/Cu(II)-mediated DNA damage, with GSH showing the best potential. In contrast, the GSH precursor NAC at low concentrations was able to enhance the level of oxidative damage, as observed with NADH. NAC can reduce Cu(II) to Cu(I) producing the radical NAC&z.rad;, which can generate the superoxide anion. However, the importance of this pathway appears to be relatively minor since the addition of NAC to the 4-hydroxyestradiol/Cu(II) system generates about 15 times more DNA strand breaks than NAC and Cu(II) alone. We suggest that NAC can perpetuate the redox cycle between the quinone and the semiquinone forms of the catecholestrogens, thereby enhancing the production of ROS. In conclusion, this study demonstrates the crucial importance of the choice of antioxidant as potential therapy against the negative biological effects of estrogens.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号