Effects of zinc chloride on the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart. |
| |
Authors: | T E Donnelly |
| |
Abstract: | In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition. |
| |
Keywords: | |
|
|