首页 | 本学科首页   官方微博 | 高级检索  
     


Alteration of human breast tumor cell membrane functions by chromosome-mediated gene transfer
Authors:Razia S. Muneer  Peter N. Gray
Abstract:BOT-2 cells (human breast tumor origin) have an impaired ability to utilize exogenous thymidine. Previous studies revealed this deficiency to be the permeation event rather than phosphorylation, since the cells have active thymidine kinase. Chromosome-mediated gene transfer was used to transfer genetic information in the form of metaphase chromosomes, from HeLa-65 cells to the BOT-2 cells, correcting the permease deficiency. Poly-L-ornithine or lipochromes were used for facilitation of chromosome uptake. After selection on HAT medium, transferant clones were isolated at a frequency of 4 X 10?5 and 1 X 10?5, respectively. Transferants MGP-1 and MGL-1 are stable after 18 months and have been characterized on the bases of purine and pyrimidine nucleoside uptake, relative thymidine kinase activities, alkaline phosphatase activities, and hydrocortisone-induced alkaline phosphatase activity. MGP-1 demonstrates positive thymidine uptake and incorporates radiolabeled thymidine into DNA. MGL-1 remains thymidine transport-deficient and survives on HAT by increasing endogenous dihydrofolate reductase activity. Alkaline phosphatase activity in MGL-1 is similar to HeLa-65, 2% of that in BOT-2, and in addition, is inducible 25-30-fold by 3 μM hydrocortisone. We have separated, genetically, a thymidine permease function from phosphorylation in cells of human origin and have transferred genetic information for the regulation of alkaline phosphatase.
Keywords:Alkaline phosphatase  chromosome-mediated gene transfer  human breast tumor cells  hydrocortisone  lipochromes  membrane bound enzymes  nucleoside uptake  thymidine kinase  thymidine transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号