首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Citrate transport in Klebsiella pneumoniae
Authors:P Dimroth  A Thomer
Abstract:Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler 4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号