首页 | 本学科首页   官方微博 | 高级检索  
     


A model for the minimum cost configuration problem in flexible manufacturing systems
Authors:Ulrich A. W. Tetzlaff
Affiliation:1. School of Business Administration, George Mason University, 22030-4444, Fairfax, Virginia, USA
Abstract:This paper presents a mathematical programming model to help select equipment for a flexible manufacturing system, i.e., the selection of the types and numbers of CNC machines, washing stations, load/unload stations, transportation vehicles, and pallets. The objective is to minimize equipment costs and work-in-process inventory cost, while fulfilling production requirements for an average period. Queueing aspects and part flow interactions are considered with the help of a Jacksonian-type closed queueing network model in order to evaluate the system's performance. Since the related decision problem of our model can be shown to be NP-complete, the proposed solution procedure is based on implicit enumeration. Four bounds are provided, two lower and two upper bounds. A tight lower bound is obtained by linearizing the model through the application of asymptotic bound analysis. Furthermore, asymptotic bound analysis allows the calculation of a lower bound for the number of pallets in the system. The first upper bound is given by the best feasible solution and the second is based on the anti-starshaped form of the throughput function.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号