首页 | 本学科首页   官方微博 | 高级检索  
     


PNA-DNA chimeras containing 5-alkynyl-pyrimidine PNA units. Synthesis, binding properties, and enzymatic stability
Authors:Bajor Zoltán  Sági Gyula  Tegyey Zsuzsanna  Kraicsovits Ferenc
Affiliation:Chemical Research Center, Institute of Chemistry, Hungarian Academy of Sciences, Budapest, Hungary.
Abstract:Three chimeric dimer synthons (oeg_t(NH)T, oeg_up(NH)T and oeg_uh(NH)T) containing thymine (t), 5-(1-propynyl)-uracil (up) and 5-(1-hexyn-1-yl)-uracil (uh) PNA units with N-(2-hydroxyethyl)glycine (oeg) backbone were synthesized in solution and incorporated into T20 oligonucleotide analogues, using standard P-amidite chemistry. Insertion of dimer blocks led to destabilization of duplexes with dA20 target. The smallest Tm drops were found for chimeras containing oeg_up(NH)T dimers. Incorporation of the chimeric synthons into the 3'-end of T20 brought about growing resistance to 3'-exonucleolytic (SV PDE) cleavage in the order of oeg_t(NH)T < oeg_up(NH)T < oeg_uh(NH)T. Due to different endonuclease activities of 3'- and 5'-exonucleases applied, placing of five consecutive dimers at the 5'-terminus resulted in a relatively smaller, but also side-chain dependent, stabilization towards the hydrolysis by 5'-exonuclease (BS PDE). Neither exonucleases (SV and BS PDE) nor an endonuclease (Nuclease P1) could hydrolyse the unnatural phosphodiester bond linking the 3'-OH of thymidine to the terminal OH of N-(2-hydroxyethyl)glycine PNA backbone.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号