首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro
Authors:Kim In Jeong  Ryu Stephen B  Kwak Yeon Sig  Kang Hunseung
Institution:Kumho Life and Environmental Science Laboratory, 1 Oryong-Dong, Buk-Gu, Gwangju, 500-712, Korea.
Abstract:Natural rubber (cis-1,4-polyisoprene) is an isoprenoid compound produced exclusively in plants by the action of rubber transferase. Despite a keen interest in revealing the mechanisms of rubber chain elongation and chain length determination, the molecular nature of rubber transferase has not yet been identified. A recent report has revealed that a 24 kDa protein tightly associated with the small rubber particles of Hevea brasiliensis, therefore designated small rubber particle protein (SRPP), plays a positive role in rubber biosynthesis. Since guayule (Parthenium argentatum Gray) produces natural rubber similar in size to H. brasiliensis, it is of critical interest to investigate whether guayule contains a similar protein to the SRPP. A cDNA clone has been isolated in guayule that shares a sequence homology with the SRPP, thus designated guayule homologue of SRPP (GHS), and the catalytic function of the protein was characterized. Sequence analysis revealed that the GHS is highly homologous in several conserved regions to the SRPP (50% identity). In vitro functional analysis of the recombinant protein overexpressed in E. coli revealed that the GHS plays a positive role in isopentenyl diphosphate incorporation into high molecular weight rubbers as SRPP does. These results indicate that guayule and Hevea rubber trees contain a protein that is similar in its amino acid sequence and plays a role in isopentenyl diphosphate incorporation in vitro, implying that it contributes to the enhancement of rubber biosynthetic activity in rubber trees.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号