首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural and functional characterization of human microsomal prostaglandin E synthase-1 by computational modeling and site-directed mutagenesis
Authors:Huang Xiaoqin  Yan Weili  Gao Daquan  Tong Min  Tai Hsin-Hsiung  Zhan Chang-Guo
Institution:Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, KY 40536, USA.
Abstract:Microsomal prostaglandin (PG) E synthase-1 (mPGES-1) has recently been recognized as a novel, promising drug target for inflammation-related diseases. Functional and pathological studies on this enzyme further stimulate to understand its structure and the structure-function relationships. Using an approach of the combined structure prediction, molecular docking, site-directed mutagenesis, and enzymatic activity assay, we have developed the first three-dimensional (3D) model of the substrate-binding domain (SBD) of mPGES-1 and its binding with substrates prostaglandin H2 (PGH2) and glutathione (GSH). In light of the 3D model, key amino acid residues have been identified for the substrate binding and the obtained experimental activity data have confirmed the computationally determined substrate-enzyme binding mode. Both the computational and experimental results show that Y130 plays a vital role in the binding with PGH2 and, probably, in the catalytic reaction process. R110 and T114 interact intensively with the carboxyl tail of PGH2, whereas Q36 and Q134 only enhance the PGH2-binding affinity. The modeled binding structure indicates that substrate PGH2 interacts with GSH through hydrogen binding between the peroxy group of PGH2 and the -SH group of GSH. The -SH group of GSH is expected to attack the peroxy group of PGH2, initializing the catalytic reaction transforming PGH2 to prostaglandin E2 (PGE2). The overall agreement between the calculated and experimental results demonstrates that the predicted 3D model could be valuable in future rational design of potent inhibitors of mPGES-1 as the next-generation inflammation-related therapeutic.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号