Solvent‐dependent conformation of amylose tris(phenylcarbamate) as deduced from scattering and viscosity data |
| |
Authors: | Taichi Fujii Ken Terao Maiko Tsuda Shinichi Kitamura Takashi Norisuye |
| |
Affiliation: | 1. Department of Macromolecular Science, Osaka University, 1‐1, Machikaneyama‐cho, Toyonaka, Osaka, 560‐0043, Japan;2. Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Gakuen‐cho, Nakaku, Sakai, Osaka 599‐8531, Japan |
| |
Abstract: | The z‐average mean‐square radius of gyration 〈S2〉z, the particle scattering function P(k), the second virial coefficient, and the intrinsic viscosity [η] have been determined for amylose tris(phenylcarbamate) (ATPC) in methyl acetate (MEA) at 25°C, in ethyl acetate (EA) at 33°C, and in 4‐methyl‐2‐pentanone (MIBK) at 25°C by light and small‐angle X‐ray scattering and viscometry as functions of the weight‐average molecular weight in a range from 2 × 104 to 3 × 106. The first two solvents attain the theta state, whereas the last one is a good solvent for the amylose derivative. Analysis of the 〈S2〉z, P(k), and [η] data based on the wormlike chain yields h (the contour length or helix pitch per repeating unit) = 0.37 ± 0.02 and λ?1 (the Kuhn segment length) = 15 ± 2 nm in MEA, h = 0.39 ± 0.02 and λ?1 = 17 ± 2 nm in EA, and h = 0.42 ± 0.02 nm and λ?1 = 24 ± 2 nm in MIBK. These h values, comparable with the helix pitches (0.37–0.40 nm) per residue of amylose triesters in the crystalline state, are somewhat larger than the previously determined h of 0.33 ± 0.02 nm for ATPC in 1,4‐dioxane and 2‐ethoxyethanol, in which intramolecular hydrogen bonds are formed between the C?O and NH groups of the neighbor repeating units. The slightly extended helices of ATPC in the ketone and ester solvents are most likely due to the replacement of those hydrogen bonds by intermolecular hydrogen bonds between the NH groups of the polymer and the carbonyl groups of the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 729–736, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com |
| |
Keywords: | amylose wormlike chain light scattering SAXS viscosity |
|
|