首页 | 本学科首页   官方微博 | 高级检索  
     


Detecting cellulase penetration into corn stover cell walls by immuno‐electron microscopy
Authors:Bryon S. Donohoe  Michael J. Selig  Sridhar Viamajala  Todd B. Vinzant  William S. Adney  Michael E. Himmel
Affiliation:1. National Renewable Energy Laboratory, Chemical and Biosciences Center, 1617 Cole Boulevard, Golden, Colorado 80401;2. telephone: 303‐384‐7773;3. fax: 303‐384‐7752
Abstract:In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild‐, moderate‐ and high‐severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme‐ and polymer‐specific antibodies. Low severity dilute‐acid pretreatment (20 min at 100°C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120°C) allowed the enzymes to penetrate ~20% of the cell wall, and the high severity (20 min pretreatment at 150°C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute‐acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high‐resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes. Biotechnol. Bioeng. 2009;103: 480–489. © 2009 Wiley Periodicals, Inc.
Keywords:cellulase  Cel7A  biomass  corn stover  electron microscopy  lignocellulose
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号