首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Thermodynamic analysis of biodegradation pathways
Authors:Stacey D Finley  Linda J Broadbelt  Vassily Hatzimanikatis
Institution:1. Department of Chemical and Biological Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208;2. Laboratory of Computational Systems Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics (SIB), CH H4 625, Station 6, CH‐1015 Lausanne, Switzerland;3. telephone: +41‐21‐693‐98‐70;4. fax: +41‐21‐693‐98‐75
Abstract:Microorganisms provide a wealth of biodegradative potential in the reduction and elimination of xenobiotic compounds in the environment. One useful metric to evaluate potential biodegradation pathways is thermodynamic feasibility. However, experimental data for the thermodynamic properties of xenobiotics is scarce. The present work uses a group contribution method to study the thermodynamic properties of the University of Minnesota Biocatalysis/Biodegradation Database. The Gibbs free energies of formation and reaction are estimated for 914 compounds (81%) and 902 reactions (75%), respectively, in the database. The reactions are classified based on the minimum and maximum Gibbs free energy values, which accounts for uncertainty in the free energy estimates and a feasible concentration range relevant to biodegradation. Using the free energy estimates, the cumulative free energy change of 89 biodegradation pathways (51%) in the database could be estimated. A comparison of the likelihood of the biotransformation rules in the Pathway Prediction System and their thermodynamic feasibility was then carried out. This analysis revealed that when evaluating the feasibility of biodegradation pathways, it is important to consider the thermodynamic topology of the reactions in the context of the complete pathway. Group contribution is shown to be a viable tool for estimating, a priori, the thermodynamic feasibility and the relative likelihood of alternative biodegradation reactions. This work offers a useful tool to a broad range of researchers interested in estimating the feasibility of the reactions in existing or novel biodegradation pathways. Biotechnol. Bioeng. 2009;103: 532–541. © 2009 Wiley Periodicals, Inc.
Keywords:complex systems  metabolic engineering  network analysis  synthetic biology  systems biology
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号