首页 | 本学科首页   官方微博 | 高级检索  
     


Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw
Authors:Mads Pedersen  Anne S. Meyer
Affiliation:Center for Bioprocess Engineering, Dept. of Chemical and Biochemical Engineering, Technical University of Denmark, DK‐2800 Kgs. Lyngby, Denmark
Abstract:In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic hydrolysis. The yields of glucose and xylose were assessed after treatments with a benchmark cellulase system consisting of Celluclast 1.5 L (Trichoderma reesei) and Novozym 188 β‐glucosidase (Aspergillus niger). Both wet oxidized and not wet oxidized wheat straw particles gave increased glucose release with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53–149 μm) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2–4 cm) was ~65% of the theoretical maximum. The xylose release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron microscopy images of the straw particles revealed edged, nonspherical, porous particles with variable surface structures as a result of the grinding. Wet oxidation pretreatment tore up the surface structures of the particles to retain vascular bundles of xylem and phloem. The enzymatic hydrolysis left behind a significant amount of solid, apparently porous structures within all particles size groups of both the not wet oxidized and wet oxidized particles. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009
Keywords:bioethanol  enzymatic hydrolysis  particle size  particle surface  pretreatment  SEM  wet oxidation  wheat straw
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号