首页 | 本学科首页   官方微博 | 高级检索  
     


Chondrogenesis on BMP‐6 loaded chitosan scaffolds in stationary and dynamic cultures
Authors:R. Seda Tığlı  Menemşe Gümüşderelioğlu
Affiliation:1. Chemical Engineering Department, Hacettepe University, Beytepe, Ankara 06800, Turkey;2. telephone: 90‐312‐2977447;3. fax: 90‐312‐2992124
Abstract:We originally investigated the suitability of chitosan scaffolds loaded with bone morphogenetic protein 6 (BMP‐6) in both stationary and dynamic conditions for cartilage tissue engineering. In the first part of the present study, ATDC5 murine chondrogenic cells were seeded in chitosan and BMP‐6 loaded chitosan scaffolds and cultured for 28 days under static conditions. In the following part, we examined the influence of dynamic cultivation conditions over BMP‐6 loaded chitosan scaffolds by using rotating bioreactor with perfusion (RCMW?). Tissue engineered constructs were characterized by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐tetrazoliumbromide (MTT) assay, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and biochemical assays for glycosaminoglycans (GAG) deoxyribonucleic acid (DNA) and collagen Type II quantification. At the end of 4 weeks static incubation period high levels of GAG (21.22 mg/g dry weight), DNA amounts (1.37 mg/g dry weight) and collagen Type II amounts (1.94 µg/g dry weight) were achieved for BMP‐6 loaded chitosan scaffolds compared to chitosan scaffolds. However, the results obtained from morphological observations suggested hypertrophic differentiation of ATDC5 cells in the presence of BMP‐6 under stationary conditions. The influence of mechanical stimulation appeared significantly with differentiated cells, cultured under dynamic conditions, showing the effect of retaining their phenotypes without hypertrophy. Biotechnol. Bioeng. 2009; 104: 601–610 © 2009 Wiley Periodicals, Inc.
Keywords:chitosan  scaffold  BMP‐6  tissue engineering  chondrogenesis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号