首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence for a role of helix IV in connecting cation- and sugar-binding sites of Escherichia coli melibiose permease
Authors:Cordat E  Leblanc G  Mus-Veteau I
Institution:Laboratoire des Membranes Cellulaires (Bat. Jean Maetz), Université de Nice/Sophia-Antipolis, CNRS (ERS 1253), LRC-CEA 16V, 06238 Villefranche Sur Mer Cedex 1, France.
Abstract:To improve the structural organization model of melibiose permease, we assessed the individual contributions of the N-terminal tryptophans to the transporter fluorescence variations induced by the binding of cations and beta-configured sugars, by replacement of the six N-terminal tryptophans by phenylalanines and the study of the signal changes. Only two mutations, W116F located in helix IV and W128F located in the cytoplasmic loop 4-5, impair permease activity. The intrinsic fluorescence spectroscopy analysis of the other mutants suggests that W54, located in helix II, W116, and W128 are mostly responsible for the cation-induced fluorescence variations. These tryptophans, W116 and W128, would also be responsible for the beta-galactoside-induced fluorescence changes observed in the N-terminal domain of the transporter. The implication of W116 and W128 in both the cation- and beta-galactoside-induced fluorescence variations led us to investigate in detail the effects of their mutations on the functional properties of the permease. The results obtained suggest that the domains harboring the two tryptophans, or the residues themselves, play a critical role in the mechanism of Na(+)/sugar symport. Taken together, the results presented in this paper and previous results are consistent with a fundamental role of helix IV in connecting cation- and sugar-binding sites of the melibiose permease.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号