Abstract: | The temperature dependences of the infrared spectra of deuterium-labeled plasma membranes of live Acholeplasma laidlawii B cells and of the isolated plasma membranes demonstrate that the profiles of the gel to liquid-crystal phase transitions are very different. At temperatures within the range of the phase transition, the live mycoplasma is able to keep the "fluidity" of its plasma membrane at a much higher value than that of the isolated plasma membrane at the same temperature. The difference is particularly pronounced at and around the temperature of growth. Live Acholeplasma laidlawii, grown at 37 degrees C on a fatty acid depleted medium supplemented with myristic acid (C14:0), pentadecanoic acid (C15:0), or palmitic acid (C16:0), are highly "fluid"; i.e., at the temperature of growth, the fractional population of the liquid-crystalline phase is 95-100% at 37 degrees C, whereas in the case of the isolated plasma membranes the fractional population of the liquid-crystalline phase at 37 degrees C is only 58% (C14:0), 36% (C15:0), or 38% (C16:0). |