首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The aerobic physiology of the air-breathing blue gourami, Trichogaster trichopterus, necessitates behavioural regulation of breath-hold limits during hypoxic stress and predatory challenge
Authors:N Herbert  R Wells
Institution:School of Biological Sciences, The University of Auckland, New Zealand. n.herbert@auckland.ac.nz
Abstract:Physiological characteristics of the blood oxygen transport system and muscle metabolism indicate a high dependence on aerobic pathways in the blue gourami, Trichogaster trichopterus. Haemoglobin concentration and haematocrit were modest and the blood oxygen affinity (P50=2.31 kPa at pH 7.4 and 28 degrees C) and its sensitivity to pH (Bohr factor, phi=-0.34) favour oxygen unloading at a relatively high oxygen pressure (PO2). The intracellular buffering capacity (44.0 slykes) and lactate dehydrogenase (LDH) activity (154.3 iu g(-1)) do not support exceptional anaerobic capabilities. Air-breathing frequency in the blue gourami is expected to increase when aquatic oxygen tensions decline. Under threat of predation, however, this behaviour must be modified at a potential cost to aerobic metabolism. We therefore tested the hypothesis that metabolic responses to predatory challenge and aquatic hypoxia are subject to behavioural modulation. Computer-generated visual stimuli consistently reduced air-breathing frequency at 19.95, 6.65 and 3.33 kPa PO2. Bi-directional rates of spontaneous activity were similarly reduced. The metabolic cost of this behaviour was estimated and positively correlated with PO2 but not with visual stimulation thus indicating down-regulation of spontaneous activity rather than breath-holding behaviour. Neither PO2 nor visual stimulation resulted in significant change to muscle lactate and ATP concentrations and confirm that aerobic breath-hold limits were maintained following behavioural modulation of metabolic demands.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号