首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distinctive Bacterial Communities in the Rhizoplane of Four Tropical Tree Species
Authors:Yoon Myung Oh  Mincheol Kim  Larisa Lee-Cruz  Ang Lai-Hoe  Rusea Go  N Ainuddin  Raha Abdul Rahim  Noraini Shukor  Jonathan M Adams
Institution:1. School of Biological Sciences, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-747, Republic of Korea
2. Division of Forest Biotechnology, Forest Research Institute of Malaysia, Kepong, 52109, Malaysia
3. Department of Biology, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
4. INTROP, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
5. Faculty of Biotechnology and Biomolecular Science, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia
Abstract:It is known that the microbial community of the rhizosphere is not only influenced by factors such as root exudates, phenology, and nutrient uptake but also by the plant species. However, studies of bacterial communities associated with tropical rainforest tree root surfaces, or rhizoplane, are lacking. Here, we analyzed the bacterial community of root surfaces of four species of native trees, Agathis borneensis, Dipterocarpus kerrii, Dyera costulata, and Gnetum gnemon, and nearby bulk soils, in a rainforest arboretum in Malaysia, using 454 pyrosequencing of the 16S rRNA gene. The rhizoplane bacterial communities for each of the four tree species sampled clustered separately from one another on an ordination, suggesting that these assemblages are linked to chemical and biological characteristics of the host or possibly to the mycorrhizal fungi present. Bacterial communities of the rhizoplane had various similarities to surrounding bulk soils. Acidobacteria, Alphaproteobacteria, and Betaproteobacteria were dominant in rhizoplane communities and in bulk soils from the same depth (0–10?cm). In contrast, the relative abundance of certain bacterial lineages on the rhizoplane was different from that in bulk soils: Bacteroidetes and Betaproteobacteria, which are known as copiotrophs, were much more abundant in the rhizoplane in comparison to bulk soil. At the genus level, Burkholderia, Acidobacterium, Dyella, and Edaphobacter were more abundant in the rhizoplane. Burkholderia, which are known as both pathogens and mutualists of plants, were especially abundant on the rhizoplane of all tree species sampled. The Burkholderia species present included known mutualists of tropical crops and also known N fixers. The host-specific character of tropical tree rhizoplane bacterial communities may have implications for understanding nutrient cycling, recruitment, and structuring of tree species diversity in tropical forests. Such understanding may prove to be useful in both tropical forestry and conservation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号