首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Steady-state and picosecond time-resolved fluorescence studies on native and apo seed coat soybean peroxidase.
Authors:J K Kamal  D V Behere
Institution:Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India.
Abstract:Seed coat soybean peroxidase (SBP) belongs to class III of the plant peroxidase super family. The protein has a very similar 3-dimensional structure with that of horseradish peroxidase (HRP-C). The fluorescence characteristics of the single tryptophan (Trp117) present in SBP and apo-SBP have been studied by steady-state and pico-second time-resolved fluorescence spectroscopy. Fluorescence decay curve of SBP was best described by a four exponential model that gave the lifetimes, 0.035 ns (97.0%), 0.30 ns (2.0%), 2.0 ns (0.8%), and 6.3 ns (0.2%). These lifetime values agreed very well with the values obtained by the model independent maximum entropy method (MEM). The three longer lifetimes that constituted 3% of the fluorophore population in the SBP sample are attributed to the presence of trace quantities of apo-SBP. The pico-second lifetime value of SBP is indicative of efficient energy transfer from Trp117 to heme. From fluorescence resonance energy transfer (FRET) calculations, the energy-transfer efficiency in SBP is found to be relatively higher as compared to HRP-C and is attributed mainly to the higher value of orientation factor, kappa(2) for SBP. Decay-associated spectra of SBP indicated that the tryptophan of SBP is relatively more solvent exposed as compared to HRP-C and is attributed to the various structural features of SBP. Linear Stern-Volmer plots obtained from the quenching measurements using acrylamide gave k(q) = 5.4 x 10(8) M(-1) s(-1) for SBP and 7.2 x 10(8) M(-1) s(-1) for apo-SBP and indicated that on removal of heme in SBP, Trp117 is more solvent exposed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号