首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Distal Forelimb Kinematics in <Emphasis Type="Italic">Erythrocebus patas</Emphasis> and <Emphasis Type="Italic">Papio anubis</Emphasis> During Walking and Galloping
Authors:Biren A Patel  John D Polk
Institution:(1) Department of Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-8081, USA;(2) Department of Anthropology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
Abstract:When using symmetrical gaits, terrestrial digitigrade monkeys adopt less digitigrade, i.e., more palmigrade-like, hand postures as they move with faster speeds. Accordingly, it appears that, in contrast to other mammals, digitigrady is unrelated to cursoriality in primates. However, researchers have not documented the effects of speed on distal forelimb kinematics in faster asymmetrical gaits, i.e., galloping, when ground reaction forces are typically increased owing to the decreased number of contact points during a stride, combined with higher speed. Thus, it remains possible that primates use digitigrade hand postures during these higher-speed asymmetrical gaits. We investigated 3D angles in the wrist joint and metacarpophalangeal joint of 2 habitually digitigrade terrestrial monkeys, Erythrocebus patas and Papio anubis, across a large range of walking and galloping speeds on a motorized treadmill. Nonparametric analyses reveal that angles, and therefore hand postures, are not different at the subject’s walk-gallop transition. Regression analyses show that when walking, digitigrade postures are adopted at slow speeds and more palmigrade-like postures are adopted at fast speeds. Contrary to expectations, there is little change in hand postures across galloping speeds; both subjects maintained palmigrade-like hand postures with substantial joint yield and reextension during support. These results indicate that the hands are always less digitigrade at faster speeds because the joints of the distal forelimb cannot resist the higher ground reaction forces that accompany these higher speed gaits.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号