首页 | 本学科首页   官方微博 | 高级检索  
     


Salt tolerance of two perennial grass Brachypodium sylvaticum accessions
Authors:Nir Sade  Maria del Mar Rubio Wilhelmi  Xiaojuan Ke  Yariv Brotman  Matthew Wright  Imran Khan  Wagner De Souza  Elias Bassil  Christian M. Tobias  Roger Thilmony  John P. Vogel  Eduardo Blumwald
Affiliation:1.Department of Plant Sciences,University of California,Davis,USA;2.Department of Life Sciences,Ben Gurion University of the Negev,Beersheva,Israel;3.Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service,Albany,USA;4.DOE Joint Genome Institute,Walnut Creek,USA;5.Department of Agronomy,University of Agriculture,Faisalabad,Pakistan
Abstract:

Key message

We studied the salt stress tolerance of two accessions isolated from different areas of the world (Norway and Tunisia) and characterized the mechanism(s) regulating salt stress in Brachypodium sylvaticum Osl1 and Ain1.

Abstract

Perennial grasses are widely grown in different parts of the world as an important feedstock for renewable energy. Their perennial nature that reduces management practices and use of energy and agrochemicals give these biomass crops advantages when dealing with modern agriculture challenges such as soil erosion, increase in salinized marginal lands and the runoff of nutrients. Brachypodium sylvaticum is a perennial grass that was recently suggested as a suitable model for the study of biomass plant production and renewable energy. However, its plasticity to abiotic stress is not yet clear. We studied the salt stress tolerance of two accessions isolated from different areas of the world and characterized the mechanism(s) regulating salt stress in B. sylvaticum Osl1, originated from Oslo, Norway and Ain1, originated from Ain-Durham, Tunisia. Osl1 limited sodium transport from root to shoot, maintaining a better K/Na homeostasis and preventing toxicity damage in the shoot. This was accompanied by higher expression of HKT8 and SOS1 transporters in Osl1 as compared to Ain1. In addition, Osl1 salt tolerance was accompanied by higher abundance of the vacuolar proton pump pyrophosphatase and Na+/H+ antiporters (NHXs) leading to a better vacuolar pH homeostasis, efficient compartmentation of Na+ in the root vacuoles and salt tolerance. Although preliminary, our results further support previous results highlighting the role of Na+ transport systems in plant salt tolerance. The identification of salt tolerant and sensitive B. sylvaticum accessions can provide an experimental system for the study of the mechanisms and regulatory networks associated with stress tolerance in perennials grass.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号