首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Application of a fluorogenic substrate in the assay of proteolytic activity and in the discovery of a potent inhibitor of Candida albicans aspartic proteinase.
Authors:J O Capobianco  C G Lerner  R C Goldman
Institution:Anti-Infective Research Division, Abbott Laboratories, Abbott Park, Illinois 60064-3500.
Abstract:A fluorescent method for monitoring the activity of the secreted Candida carboxyl (aspartic) proteinase (EC 3.4.23.6) was developed using a fluorogenic substrate based on resonance energy transfer. The fluorescent assay was used to monitor proteinase production, purification, and inhibition. The Km for the fluorogenic substrate, 4-(4-dimethylaminophenylazo)benzoyl-gamma-aminobutyryl-Ile-His-Pro - Phe-His-Leu-Val-Ile-His-Thr- 5-(2-aminoethyl)amino]naphthalene-1-sulfonic acid, was found to be 4.3 microM at the optimum pH of 4.5. Reaction products were separated by reverse-phase high-performance liquid chromatography and identified by amino acid analysis or by 252Cf plasma desorption mass spectrometry. Cleavage of the fluorogenic substrate was between the histidine-threonine residues, releasing the fluorescent product, threonine-5-(2-aminoethyl)amino]naphthalene-1-sulfonic acid. Proteolytic activity was expressed as nanomoles of fluorescent product released at 22 degrees C/60 min, pH 4.5, and the release of 0.9 nmol product was equivalent to one hemoglobin proteolytic unit (O.D.A700 increase of 0.100) produced at 37 degrees C/60 min, pH 3.5. The aspartic proteinase inhibitor pepstatin had an IC50 of 27 nM when tested in a dose-response study with the purified enzyme. The apparent Ki for pepstatis was 2.9 nM. Several synthetic inhibitors of the enzymes were identified with IC50's in the nanomolar range. The most potent compound, A70450, was characterized as a fast, tight-binding inhibitor having an IC50 of 1.3 nM and apparent Ki of 0.17 nM.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号