首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms by which resistant starches and non-starch polysaccharide sources affect the metabolism and disposition of the food carcinogen, 2-amino-3-methylimidazo[4,5-f]quinoline
Authors:Kestell P  Zhu S  Ferguson L R
Affiliation:Faculty of Medicine and Health Science, Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, New Zealand.
Abstract:Although both non-starch polysaccharides (NSP) and resistant starches (RS) are included in current definitions of dietary fibre, our previous work has suggested fundamental differences in the way in which these two classes of material affect the disposition and absorption of a dietary carcinogen. The present studies explore whether different effects on carcinogen metabolism could play a role in the contrasting patterns seen previously. Groups of female Wistar rats were pre-fed for 4 weeks one of five types of defined diet (AIN-76). The control diet contained 35% maize starch and no dietary fibre. The RS-containing diets had all the maize starch substituted with either Hi-maize or potato starch. In the NSP-containing diets, 10% of the maize starch was substituted with dietary fibre in the form of either lignified plant cell walls (wheat straw) or soluble dietary fibre (apple pectin). Pre-fed rats were gavaged with the food carcinogen, [2-14C] 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), and plasma and urinary metabolites characterized using HPLC at various time intervals after administration. After 4 h gavage, plasma from rats on both RS-containing diets contained significantly higher levels of intact IQ and lower levels of the major metabolites, IQ-5-O-glucuronide and IQ-5-sulfate, as compared with plasma from the negative control group at this time. In contrast, plasma from animals on the NSP-containing wheat straw diet (and to a lesser extent the apple pectin diet) showed significantly lower levels of intact IQ, and significantly higher levels of the two major metabolites, as compared with those from the control rats. These different metabolite profiles were also reflected in different urinary excretion profiles. Urine from rats pre-fed RS-containing diets revealed significantly slower metabolite excretion as compared with urine from rats that had been given the NSP-containing diets. Western blotting methodologies also profiled differences between the effects of these two types of dietary fibre in the expression of xenobiotic metabolizing enzymes. We conclude that changes in activity and expression of xenobiotic metabolising enzymes could play a role in the contrasting effects of these two types of dietary fibre on carcinogen uptake and disposition.
Keywords:NSP  non-starch polysaccharides  RS  resistant starches  NDO  non-digestible oligosaccharides  IQ  CYP  cytochrome P450  GST  NSP-SDF  non-starch polysaccharides-soluble dietary fibre  NSP-LPCW  non-starch polysaccharides-lignified plant cell walls  Carcinogen metabolism  Resistant starches  Non-starch polysaccharides
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号